CoDAS
http://www.codas.periodikos.com.br/article/doi/10.1590/2317-1782/e20240332pt
CoDAS
Critical Review or Scoping Review

O processamento auditivo sob a perspectiva da avaliação eletrofisiológica auditiva

Auditory processing from the perspective of auditory electrophysiological assessment

Pedro de Lemos Menezes; Kelly Cristina Lira de Andrade; Ana Figueiredo Frizzo; Danielle Cavalcante Ferreira; Carlos Henrique Alves Batista; Eliane Schochat; Liliane Desgualdo

Downloads: 0
Views: 20

Resumo

RESUMO: Objetivo: Descrever o processamento do som no sistema auditivo a partir dos potenciais evocados auditivos.

Estratégia de pesquisa: Foi realizada uma revisão da literatura sobre o processamento auditivo sob a perspectiva da avaliação eletrofisiológica auditiva, considerando estudos clássicos e atuais da área.

Critérios de seleção: Foram incluídos estudos que abordaram os potenciais evocados auditivos e sua relação com os processos de codificação, decodificação, discriminação, percepção e congruência semântica do som.

Análise dos dados: Os dados foram analisados de forma descritiva e crítica, integrando informações sobre diferentes potenciais evocados auditivos e seus respectivos papéis no processamento auditivo.

Resultados: O sistema auditivo organiza e codifica características acústicas, como frequência, intensidade e modulações temporais, transformando-as em representações neurais interpretadas pelo córtex. Os potenciais evocados auditivos fornecem informações sobre os processos de codificação, decodificação, discriminação, percepção e congruência semântica. O Frequency Following Response avalia a precisão da codificação neural dos sons, especialmente da fala; os potenciais evocados auditivos corticais refletem processos avançados de codificação, decodificação e discriminação; e o N400 está associado à congruência semântica, elucidando o processamento auditivo cognitivo.

Conclusão: Os potenciais evocados auditivos são ferramentas importantes para a avaliação do processamento auditivo, contribuindo para o diagnóstico de transtornos e para o monitoramento do desempenho auditivo em diferentes populações.

Palavras-chave

Audiologia, Potenciais Evocados Auditivos, Córtex Auditivo, Percepção da Fala, Processamento Auditivo

References

1 Wang X. Cortical coding of auditory features. Annu Rev Neurosci. 2018;41(1):527-52. https://doi.org/10.1146/annurev-neuro-072116-031302. PMid:29986161.

2 Denham SL, Winkler I. Predictive coding in auditory perception: challenges and unresolved questions. Eur J Neurosci. 2020;51(5):1151-60. https://doi.org/10.1111/ejn.13802. PMid:29250827.

3 Skarynski PH, Kolodiejak A, Sanfins MD. Eletrofisiologia da audição. In: Menezes PL, Sanfins MD, Capra D, Andrade KCL, Frizzo ACF, editors. Manual de eletrofisiologia e eletroacústica: um guia para clínicos. Ribeirão Preto: BookToy; 2022. p. 235-50.

4 Näätänen R, Paavilainen P, Rinne T, Alho K. The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol. 2007;118(12):2544-90. https://doi.org/10.1016/j.clinph.2007.04.026. PMid:17931964.

5 Picton TW. Human auditory evoked potentials. 2nd ed. San Diego: Plural Publishing; 2010.

6 Feng L, Wang X. Harmonic template neurons in primate auditory cortex underlying complex sound processing. Proc Natl Acad Sci USA. 2017;114(5):E840-8. https://doi.org/10.1073/pnas.1607519114. PMid:28096341.

7 Marin N, Lobo Cerna F, Barral J. Signatures of cochlear processing in neuronal coding of auditory information. Mol Cell Neurosci. 2022;120:103732. https://doi.org/10.1016/j.mcn.2022.103732. PMid:35489636.

8 Oliveira JA. Fisiologia clínica da audição: cóclea ativa. In: Otacílio LF, editor. Tratado de otorrinolaringologia. São Paulo: Roca; 1994. p. 510-30.

9 Ruben RJ. The developing concept of tonotopic organization of the inner ear. J Assoc Res Otolaryngol. 2020;21(1):1-20. https://doi.org/10.1007/s10162-019-00741-3. PMid:32020418.

10 Liu P, Zhu H, Chen M, Hong Q, Chi X. Electrophysiological screening for children with suspected auditory processing disorder: a systematic review. Front Neurol. 2021;12:692840. https://doi.org/10.3389/fneur.2021.692840. PMid:34497576.

11 Bidelman GM, Yellamsetty A. Noise and pitch interact during the cortical segregation of concurrent speech. Hear Res. 2017;351:34-44. https://doi.org/10.1016/j.heares.2017.05.008. PMid:28578876.

12 Nada NM, Kolkaila EA, Gabr TA, El-Mahallawi TH. Speech auditory brainstem response audiometry in adults with sensorineural hearing loss. Egypt J Otolaryngol. 2016;17(2):87-94. https://doi.org/10.1016/j.ejenta.2016.04.002.

13 Anderson LA, Linden JF. Mind the gap: two dissociable mechanisms of temporal processing in the auditory system. J Neurosci. 2016;36(6):1977-95. https://doi.org/10.1523/JNEUROSCI.1652-15.2016. PMid:26865621.

14 Fernandes DGD, Sousa PC, Costa-Guarisco LP. Estudo do reconhecimento de fala nas perdas auditivas neurossensoriais descendentes. Rev CEFAC. 2014;16(3):792-7. https://doi.org/10.1590/1982-0216201423612.

15 American Speech-Language-Hearing Association. (Central) auditory processing disorders: the role of the audiologist [Position Statement]. Rockville: ASHA; 2005.

16 Chowsilpa S, Bamiou DE, Koohi N. Effectiveness of the auditory temporal ordering and resolution tests to detect central auditory processing disorder in adults with evidence of brain pathology: a systematic review and meta-analysis. Front Neurol. 2021;12:656117. https://doi.org/10.3389/fneur.2021.656117. PMid:34149594.

17 Stephens JD, Holt LL. A standard set of American-English voiced stop-consonant stimuli from morphed natural speech. Speech Commun. 2011;53(6):877-88. https://doi.org/10.1016/j.specom.2011.02.007. PMid:21666844.

18 Soares IA, Menezes PL, Carnaúba ATL, Andrade KCL, Lins OG. Study of cochlear microphonic potentials in auditory neuropathy. Braz J Otorhinolaryngol. 2016;82(6):722-36. https://doi.org/10.1016/j.bjorl.2015.11.022. PMid:27177976.

19 Harrison RV, Aran JM, Erre JP. The diagnostic utility of the cochlear microphonic. Ear Hear. 1981;2(2):67-77. http://doi.org/10.1097/00003446-198104000-00003.

20 Gommeren H, Bosmans J, Cardon E, Mertens G, Cras P, Engelborghs S, et al. Cortical auditory evoked potentials in cognitive impairment and their relevance to hearing loss: a systematic review highlighting the evidence gap. Front Neurosci. 2021;15:781322. https://doi.org/10.3389/fnins.2021.781322. PMid:34867176.

21 Jacxsens L, De Pauw J, Cardon E, van der Wal A, Jacquemin L, Gilles A, et al. Brainstem evoked auditory potentials in tinnitus: A best-evidence synthesis and meta-analysis. Front Neurol. 2022;13:941876. https://doi.org/10.3389/fneur.2022.941876. PMid:36071905.

22 Jewett DL, Williston JS. Auditory evoked far fields averaged from the scalp of humans. Brain. 1971;94(4):681-96. https://doi.org/10.1093/brain/94.4.681. PMid:5132966.

23 Skoe E, Kraus N. Auditory brainstem response to complex sounds: a tutorial. Ear Hear. 2010;31(3):302-24. https://doi.org/10.1097/AUD.0b013e3181cdb272. PMid:20084007.

24 Silva JD, Muniz LF, Gouveia MCL, Hora LCD. Study of the brainstem auditory evoked potential with speech stimulus in the pediatric population with and without oral language disorders: a systematic review. Braz J Otorhinolaryngol. 2020;86(6):793-811. https://doi.org/10.1016/j.bjorl.2020.05.025. PMid:32768355.

25 Venâncio LGA, Leal MC, Hora LCD, Griz SMS, Muniz LF. Frequency-Following Response (FFR) em usuários de implante coclear: uma revisão sistemática dos parâmetros de aquisição, análise e resultados. CoDAS. 2022;34(4):e20210116. https://doi.org/10.1590/2317-1782/20212021116. PMid:35081198.

26 Kraus N, Anderson S, White-Schwoch T. The frequency-following response: a window into human communication. In: Kraus N, Anderson S, White-Schwoch T, Fay RR, Popper AN, editors. The frequency-following response: a window into human communication. Berlin: Springer International Publishing; 2017. p. 1-15. https://doi.org/10.1007/978-3-319-47944-6_1.

27 Sanfins MD, Borges LR, Ubiali T, Colella-Santos MF. Speech auditory brainstem response (speech ABR) in the differential diagnosis of scholastic difficulties. Braz J Otorhinolaryngol. 2017;83(1):112-6. https://doi.org/10.1016/j.bjorl.2015.05.014. PMid:26631329.

28 Coffey EBJ, Herholz SC, Chepesiuk AM, Baillet S, Zatorre RJ. Cortical correlates of the auditory frequency-following response revealed by MEG. Nat Commun. 2016;7(1):11070. https://doi.org/10.1038/ncomms11070. PMid:27009409.

29 Bidelman GM. Subcortical sources dominate the neuroelectric auditory frequency-following response to speech. Neuroimage. 2018;175:56-69. https://doi.org/10.1016/j.neuroimage.2018.03.060. PMid:29604459.

30 Leigh-Paffenroth ED, Roup CM, Noe CM. Behavioral and electrophysiologic binaural processing in persons with symmetric hearing loss. J Am Acad Audiol. 2011;22(3):181-93. https://doi.org/10.3766/jaaa.22.3.6. PMid:21545770.

31 Allen RL, Schwab BM, Cranford JL, Carpenter MD. Investigation of binaural interference in normal-hearing and hearing-impaired adults. J Am Acad Audiol. 2000;11(9):494-500. https://doi.org/10.1055/s-0042-1748138. PMid:11057734.

32 Strouse A, Wilson RH. Recognition of one-, two-, and three-pair dichotic digits under free and directed recall. J Am Acad Audiol. 1999;10(10):557-71. https://doi.org/10.1055/s-0042-1748546. PMid:10613352.

33 Roup CM, Leigh ED. Individual differences in behavioral and electrophysiological measures of binaural processing across the adult life span. Am J Audiol. 2015;24(2):204-15. https://doi.org/10.1044/2015_AJA-14-0017. PMid:25651479.

34 Didoné DD, Oliveira LS, Durante AS, Almeida K, Garcia MV, Riesgo RDS, et al. Cortical auditory-evoked potential as a biomarker of central auditory maturation in term and preterm infants during the first 3 months. Clinics. 2021;76:e2944. https://doi.org/10.6061/clinics/2021/e2944. PMid:34669874.

35 Sutton S, Braren M, Zubin J, John ER. Evoked-potential correlates of stimulus uncertainty. Science. 1965;150(3700):1187-8. https://doi.org/10.1126/science.150.3700.1187. PMid:5852977.

36 Hall JW 3rd. Handbook of auditory evoked responses. Boston: Allyn & Bacon; 2006.

37 Hämäläinen JA, Leppanen PH, Guttorm TK, Lyytinen H. N1 and P2 components of auditory event-related potentials in children with and without reading disabilities. Clin Neurophysiol. 2007;118(10):2263-75. https://doi.org/10.1016/j.clinph.2007.07.007. PMid:17714985.

38 Tremblay K, Kraus N, McGee T, Ponton C, Otis B. Central auditory system plasticity: changes in the N1-P2 complex after speech-sound training. Ear Hear. 2001;22(2):79-90. https://doi.org/10.1097/00003446-200104000-00001. PMid:11324846.

39 Sharma A, Dorman MF, Spahr AJ. A sensitive period for the development of the central auditory system in children with cochlear implants. Ear Hear. 2002;23(6):532-9. https://doi.org/10.1097/00003446-200212000-00004. PMid:12476090.

40 Tseng YJ, Nouchi R, Cheng CH. Mismatch negativity in patients with major depressive disorder: A meta-analysis. Clin Neurophysiol. 2021;132(10):2654-65. https://doi.org/10.1016/j.clinph.2021.06.019. PMid:34456164.

41 Garrido MI, Kilner JM, Stephan KE, Friston KJ. The mismatch negativity: A review of underlying mechanisms. Clin Neurophysiol. 2009;120(3):453-63. https://doi.org/10.1016/j.clinph.2008.11.029. PMid:19181570.

42 Potgurski DS, Ribeiro GE, da Silva DPC. Ocorrência de alterações nos potenciais evocados auditivos de fumantes: revisão sistemática da literatura. CoDAS. 2023;35(4):e20210273. https://doi.org/10.1590/2317-1782/20232021273en. PMid:37556701.

43 Morange DA, Amaral MTR, Martinez-Silveira MS, Trébuchon A. Rhinal and hippocampal event-related potentials as epileptogenic zone markers in the pre-surgical evaluation of temporal epilepsies: a systematic review. Arq Neuropsiquiatr. 2023;81(5):492-501. https://doi.org/10.1055/s-0043-1761493. PMid:37257470.

44 Idiazabal MA, Palau M, Fernandez E, Fierro G. Estudios neurofisiológicos en los trastornos del neurodesarrollo: potenciales evocados cognitivos. Medicina (B Aires). 2023;83(Suppl 2):12-6. PMid:36820476.
 


Submitted date:
10/26/2024

Accepted date:
05/17/2025

698cdd59a953956bf07f2708 codas Articles

CoDAS

Share this page
Page Sections