CoDAS
http://www.codas.periodikos.com.br/article/doi/10.1590/2317-1782/e20240271p
CoDAS
Original Article

Usabilidade de um dispositivo para reabilitação da força e mobilidade dos lábios associado a jogos digitais: estudo piloto

Usability of a device for lip strength and mobility rehabilitation associated with digital games: a pilot study

Joyce Marques Barroso; Clarice Magnani Figueiredo; Eduardo Pena Castro Fantini; Marcos Antônio Abdalla Júnior; Andréa Rodrigues Motta; Estevam Barbosa Las Casas; Renata Maria Moreira Moraes Furlan

Downloads: 0
Views: 26

Resumo

Objetivo: Avaliar a usabilidade de um dispositivo para reabilitação da força e da mobilidade dos lábios que associa exercícios a jogos digitais e verificar a influência da idade, da tensão muscular e do número de tentativas no desempenho de adultos e crianças. Método: Estudo observacional, transversal, do qual participaram 11 adultos e nove crianças. Os participantes utilizaram um instrumento que consiste em um protótipo anatômico funcional para reabilitação do músculo orbicular da boca, que funciona como comando para jogos digitais e é acionado pelo movimento de contrarresistência realizado pelos lábios. Os participantes executaram um jogo com o dispositivo e receberam uma pontuação proporcional ao seu desempenho. Após, os participantes adultos responderam o questionário System Usability Scale (SUS) para avaliação da usabilidade do instrumento. A pontuação dos participantes foi comparada considerando idade, tensão muscular dos lábios e número de tentativas. Resultados: A usabilidade foi considerada boa, com média de 91,1 e desvio-padrão de 11 pontos. Não houve diferença entre as pontuações obtidas nas diferentes tentativas, bem como quando comparadas as pontuações dos adultos menores e maiores de 22 anos, ou quando comparadas crianças com tensão de lábios normal e diminuída. Na comparação da pontuação entre adultos e crianças, houve diferença com relevância estatística para a primeira tentativa e para a média das tentativas. Conclusão: O instrumento apresentou boa usabilidade, com influência da faixa etária (adultos x crianças) na pontuação dos participantes.

Palavras-chave

Força Muscular; Jogos de Vídeo; Reabilitação; Lábios; Terapia Miofuncional

Abstract

Purpose: To evaluate the usability of a device for lip strength and mobility rehabilitation, combining exercises with digital games, and to examine the influence of age, muscle tension, and the number of attempts on the performance of adults and children. Methods: This observational, cross-sectional study included 11 adults and nine children. Participants used a device consisting of an anatomical-functional prototype for the rehabilitation of the orbicularis oris muscle, which works as a controller for digital games and is activated by the counter-resistance movement performed by the lips. Participants played a game with the device and received a score proportional to their performance. After using the game, adult participants completed the System Usability Scale (SUS) to assess the device’s usability. Participants’ scores were compared based on age, lip muscle tension, and the number of attempts. Results: Usability was considered good, with a mean score of 91.1 and a standard deviation of 11 points. There was no difference in scores across different attempts or between the scores of adults under and over 22 years old or children with normal and reduced lip tension. A statistically significant difference was found between adults’ and children’s scores in the first attempt and the mean of the attempts. Conclusion: The device demonstrated good usability, with age (adults vs. children) influencing participant scores.

Keywords

Muscle Strength; Video Games; Rehabilitation; Lips; Myofunctional Therapy

References

  • 1Silva TFD, Ribeiro GCF, Silva CEED, Assis MF, Dezani H, Berti LC. Efficacy in the use of gamification strategy in phonological therapy. CoDAS. 2023;35(6):e20220181. http://doi.org/10.1590/2317-1782/20232022181en PMid:37703113.
    » http://doi.org/10.1590/2317-1782/20232022181en
  • 2Blackman S. Serious games... and less! Comput Graph. 2005;39(1):12-6. http://doi.org/10.1145/1057792.1057802
    » http://doi.org/10.1145/1057792.1057802
  • 3Thompson D, Baranowski T, Buday R, Baranowski J, Thompson V, Jago R, et al. Serious video games for health: how behavioral science guided the development of a serious video game. Simul Gaming. 2010;41(4):587-606. http://doi.org/10.1177/1046878108328087 PMid:20711522.
    » http://doi.org/10.1177/1046878108328087
  • 4Machado PG, Mezzomo CL, Badaró AFV. Body posture and the stomatognathic functions in mouth breathing children: a literature review. Rev CEFAC. 2012;14(3):553-65. http://doi.org/10.1590/S1516-18462012005000033
    » http://doi.org/10.1590/S1516-18462012005000033
  • 5Watanabe MKF, Tsukimoto DR, Tsukimoto GR. Occupational Therapy and the use of the computer as a resource in rehabilitation. Acta Fisiatr. 2003;10(1):17-20. http://doi.org/10.11606/issn.2317-0190.v10i1a102416
    » http://doi.org/10.11606/issn.2317-0190.v10i1a102416
  • 6Kothari M, Svensson P, Jensen J, Kjærsgaard A, Jeonghee K, Nielsen JF, et al. Training-induced cortical plasticity compared between three tongue-training paradigms. Neuroscience. 2013;246:1-12. http://doi.org/10.1016/j.neuroscience.2013.04.040 PMid:23632170.
    » http://doi.org/10.1016/j.neuroscience.2013.04.040
  • 7Alves L, Carvalho AL, Silveira JCC, Filho JFB, Fortini MS, Costa DSF, et al. Videogame: its implications for children and adolescents learning, attention and health. RMMG. 2009;19(1):19-25.
  • 8Johnson MJ. Recent trends in robot-assisted therapy environments to improve real-life functional performance after stroke. J Neuroeng Rehabil. 2006;3(1):29. http://doi.org/10.1186/1743-0003-3-29 PMid:17176474.
    » http://doi.org/10.1186/1743-0003-3-29
  • 9Mirelman A, Bonato P, Deutsch JE. Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke. 2009;40(1):169-74. http://doi.org/10.1161/STROKEAHA.108.516328 PMid:18988916.
    » http://doi.org/10.1161/STROKEAHA.108.516328
  • 10Furlan RMMM, Santana GA, Amaral MS, Motta AR, Las Casas EB. The influence of tongue strength on children’s performance in computer games reliant on lingual force generation. J Oral Rehabil. 2020;47(7):872-9. http://doi.org/10.1111/joor.12951 PMid:32080882.
    » http://doi.org/10.1111/joor.12951
  • 11Amaral MS, Furlan RMMM, De Las Casas EB, Motta AR. The influence of tongue mobility on children’s performance in computer games that depend on lingual movements. J Oral Rehabil. 2020;47(10):1233-41. http://doi.org/10.1111/joor.13050 PMid:33464606.
    » http://doi.org/10.1111/joor.13050
  • 12Furlan RMMM, Santana GA, Bischof WF, Motta AR, Las Casas EB. A new method for tongue rehabilitation with computer games: pilot study. J Oral Rehabil. 2019;46(6):518-25. http://doi.org/10.1111/joor.12775 PMid:30725489.
    » http://doi.org/10.1111/joor.12775
  • 13Maia AV, Furlan RMMM, Moraes KO, Amaral MS, Medeiros AM, Motta AR. Tongue strength rehabilitation using biofeedback: a case report. CoDAS. 2019;31(5):e20180163. http://doi.org/10.1590/2317-1782/20182018163 PMid:31664370.
    » http://doi.org/10.1590/2317-1782/20182018163
  • 14Park H, Park J, Kwon Y, Choi HS, Kim HJ. Effect of orbicularis oris muscle training on muscle strength and lip closure function in patients with stroke and swallowing disorder. J Phys Ther Sci. 2018A;30(11):1355-6. http://doi.org/10.1589/jpts.30.1355 PMid:30464363.
    » http://doi.org/10.1589/jpts.30.1355
  • 15Choi JB. Effect of neuromuscular electrical stimulation on facial muscle strength and oral function in stroke patients with facial palsy. J Phys Ther Sci. 2016;28(9):2541-3. http://doi.org/10.1589/jpts.28.2541 PMid:27799689.
    » http://doi.org/10.1589/jpts.28.2541
  • 16Lambrechts H, De Baets E, Fieuws S, Willems G. Lip and tongue pressure in orthodontics patients. Eur J Orthod. 2010;32(4):466-71. http://doi.org/10.1093/ejo/cjp137 PMid:20089572.
    » http://doi.org/10.1093/ejo/cjp137
  • 17Sjögreen L, Mårtensson Å, Ekström AB. Speech characteristics in the congenital and childhood‐onset forms of myotonic dystrophy type 1. Int J Lang Commun Disord. 2018;53(3):576-83. http://doi.org/10.1111/1460-6984.12370 PMid:29327796.
    » http://doi.org/10.1111/1460-6984.12370
  • 18Berggren KN, Hung M, Dixon MM, Bounsanga J, Crockett B, Foye MD, et al. Orofacial strength, dysarthria, and dysphagia in congenital myotonic dystrophy. Muscle Nerve. 2018;58(3):413-7. http://doi.org/10.1002/mus.26176 PMid:29901230.
    » http://doi.org/10.1002/mus.26176
  • 19Sakai K, Nakayama E, Tohara H, Takahashi O, Ohnishi S, Tsuzuki H, et al. Diagnostic accuracy of lip force and tongue strength for sarcopenic dysphagia in older inpatients: A cross-sectional observational study. Clin Nutr. 2019;38(1):303-9. http://doi.org/10.1016/j.clnu.2018.01.016 PMid:29398338.
    » http://doi.org/10.1016/j.clnu.2018.01.016
  • 20Mul K, Berggen KN, Sills MY, McCalley A, Engelen BGM, Johnson NE, et al. Effects of weakness of orofacial muscles on swallowing and communication in FSHD. Neurology. 2019;92(9):e957-63. http://doi.org/10.1212/WNL.0000000000007013 PMid:30804066.
    » http://doi.org/10.1212/WNL.0000000000007013
  • 21Figueiredo CM. Desenvolvimento e testes de funcionalidades do instrumento de reabilitação da força labial utilizando jogos digitais [dissertação]. Belo Horizonte: Programa de Pós-graduação em Engenharia de Estruturas, Universidade Federal de Minas Gerais; 2020.
  • 22ISO: International Organization for Standardization. ISO 9241-11. Ergonomic requirements for office work with visual display terminals (VDTs) - Part 11: Guidance on usability. Geneva: ISO; 1998.
  • 23Catecati T, Faust FG, Roepke GAL, Araújo FS, Albertazzi D, Garcia-Ramirez AR. Métodos para a avaliação da usabilidade no design de produtos. DAPesquisa. 2018;6(8):564-81. http://doi.org/10.5965/1808312906082011564
    » http://doi.org/10.5965/1808312906082011564
  • 24Marchesan IQ, Berretin-Félix G, Genaro KF. MBGR protocol of orofacial myofunctional evaluation with scores. Int J Orofacial Myology. 2012;38(1):38-77. http://doi.org/10.52010/ijom.2012.38.1.5 PMid:23362752.
    » http://doi.org/10.52010/ijom.2012.38.1.5
  • 25Brooke J. SUS-a quick and dirty usability scale. In: Jordan PW, Thomas B, Weerdmeester BA, McClelland IL, editors. Usability evaluation in industry. London: Taylor and Francis; 1996. p. 189-94.
  • 26Martins AI, Rosa AF, Queirós A, Silva A, Rocha NP. European Portuguese validation of the System Usability Scale (SUS). Procedia Comput Sci. 2015;67:293-300. http://doi.org/10.1016/j.procs.2015.09.273
    » http://doi.org/10.1016/j.procs.2015.09.273
  • 27Hyzy M, Bond R, Mulvenna M, Bai L, Dix A, Leigh S, et al. System Usability Scale Benchmarking for Digital Health Apps: meta-analysis. JMIR Mhealth Uhealth. 2022;10(8):e37290. http://doi.org/10.2196/37290 PMid:35980732.
    » http://doi.org/10.2196/37290
  • 28Kim H, Lee SH, Cho NB, You H, Choi T, Kim J. User-dependent usability and feasibility of a swallowing training mHealth app for older adults: mixed methods pilot study. JMIR Mhealth Uhealth. 2020;8(7):e19585. http://doi.org/10.2196/19585 PMid:32663161.
    » http://doi.org/10.2196/19585
  • 29Reyner Parra E. Development of a serious game as a tool to improve speech and language rehabilitation [thesis]. Barcelona: Escola Tècnica Superior d’Enginyeria Industrial de Barcelona; 2023.
  • 30Kothari M, Svensson P, Jensen J, Holm TD, Nielsen MS, Mosegaard T, et al. Tongue‐controlled computer game: a new approach for rehabilitation of tongue motor function. Arch Phys Med Rehabil. 2014;95(3):524-30. http://doi.org/10.1016/j.apmr.2013.08.008 PMid:23994051.
    » http://doi.org/10.1016/j.apmr.2013.08.008
  • 31Crow HC, Ship JA. Tongue strength and endurance in different aged individuals. J Gerontol A Biol Sci Med Sci. 1996;51(5):M247-50. http://doi.org/10.1093/gerona/51A.5.M247 PMid:8808997.
    » http://doi.org/10.1093/gerona/51A.5.M247
  • 32Smith CD, Umberger GH, Manning EL, Slevin JT, Wekstein DR, Schmitt FA, et al. Critical decline in fine motor hand movements in human aging. Neurology. 1999;53(7):1458-61. http://doi.org/10.1212/WNL.53.7.1458 PMid:10534251.
    » http://doi.org/10.1212/WNL.53.7.1458
  • 33Boudreau SA, Hennings K, Svensson P, Sessle BJ, Arendt‐Nielsen L. The effects of training time, sensory loss and pain on human motor learning. J Oral Rehabil. 2010;37(9):704-18. http://doi.org/10.1111/j.1365-2842.2010.02103.x PMid:20492438.
    » http://doi.org/10.1111/j.1365-2842.2010.02103.x
  • 34Park HS, Kim JU, Park JY, Oh DH, Kim HJ. Comparison of orbicularis oris muscle strength and endurance in young and elderly adults. J Phys Ther Sci. 2018;30(12):1477-8. http://doi.org/10.1589/jpts.30.1477 PMid:30568338.
    » http://doi.org/10.1589/jpts.30.1477
  • 35Jeong DM, Shin YJ, Lee NR, Lim HK, Choung HW, Pang KM, et al. Maximal strength and endurance scores of the tongue, lip and cheek in healthy, normal Koreans. J Korean Assoc Oral Maxillofac Surg. 2017;43(4):221-8. http://doi.org/10.5125/jkaoms.2017.43.4.221 PMid:28875136.
    » http://doi.org/10.5125/jkaoms.2017.43.4.221
  • 36Bilodeau-Mercure M, Tremblay P. Age differences in sequential speech production: articulatory and physiological factors. J Am Geriatr Soc. 2016;64(11):e177-82. http://doi.org/10.1111/jgs.14491 PMid:27783395.
    » http://doi.org/10.1111/jgs.14491
  • 37Paus T, Zijdenbos A, Worsley K, Collins DL, Blumenthal J, Giedd JN, et al. Structural maturation of neural pathways in children and adolescents: in vivo study. Science. 1999;283(5409):1908-11. http://doi.org/10.1126/science.283.5409.1908 PMid:10082463.
    » http://doi.org/10.1126/science.283.5409.1908
  • 38Saitoh I, Inada E, Kaihara Y, Nogami Y, Murakami D, Ishitani N, et al. The relationship between lip-closing strength and the related factors in a cross-sectional study. Pediatr Dent J. 2017;27(3):115-20. http://doi.org/10.1016/j.pdj.2017.06.002
    » http://doi.org/10.1016/j.pdj.2017.06.002
  • 39Lazarus JAC, Whitall J, Franks CA. Isometric force regulation in children. J Exp Child Psychol. 1995;60(2):245-60. http://doi.org/10.1006/jecp.1995.1040
    » http://doi.org/10.1006/jecp.1995.1040
  • 40Huo X, Ghovanloo M. Evaluation of a wireless wearable tongue–computer interface by individuals with high-level spinal cord injuries. J Neural Eng. 2010;7(2):26008. http://doi.org/10.1088/1741-2560/7/2/026008 PMid:20332552.
    » http://doi.org/10.1088/1741-2560/7/2/026008
  • 41Kothari M, Svensson P, Huo X, Ghovanloo M, Baad-Hansen L. Force and complexity of tongue task training influences behavioral measures of motor learning. Eur J Oral Sci. 2012;120(1):46-53. http://doi.org/10.1111/j.1600-0722.2011.00894.x PMid:22288920.
    » http://doi.org/10.1111/j.1600-0722.2011.00894.x

Submitted date:
08/28/2024

Accepted date:
01/16/2025

69012122a953955fee0d6a3b codas Articles

CoDAS

Share this page
Page Sections